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Abstract: Using a new global data base on patents and innovation inputs, this paper 
employs several recently developed econometric techniques to examine the dynamic 
relationship between research and development and U.S. patents granted. We confirm at 
the country level the recurrent micro-level finding of a strong relationship between the 
two and estimate the OECD elasticity to be effectively unity. This conflicts with the 
frequent micro level finding of strong diminishing returns in knowledge generation and 
suggests the importance of spillover effects measurable only at the aggregate level. 
Developing countries, however, do show diminishing returns and implicit rates of return 
to innovative effort in these countries appear to be a fraction of those found in the OECD. 
We then seek to explain the variance in elasticities by introducing proxies for the 
functioning of the national innovation system, the set of institutions and agents that create 
and diffuse knowledge. Across the entire sample, several variables, in particular 
education, security of intellectual property rights, and in some specifications the quality 
of research institutions and their interaction with the private sector impact the elasticity of 
transformation of R&D into patents. 
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I. Introduction 

 

The idea that technological progress is driven by research effort is the central 

insight of the endogenous growth literature.1  In several of the canonical models (Romer 

1990, Grossman and Helpman 1991 and Aghion and Howitt 1992), the assumption of 

constant returns to knowledge generation plus large spillovers to other researchers 

implies that more resources invested in R&D leads to increasing growth rates.2   

 

However, there is disagreement over the technology generating new knowledge. 

Jones (1995) critiqued the relevance of such models arguing that in the US, both growth 

and the intermediate measure of knowledge generation, patents, appear to be constant 

over time despite large increases in R&D employment, implying decreasing, rather than 

the increasing returns implicit in previous models.3  In fact, a long and expanding 

literature offers support for this view. While it may well be the case that future 

researchers may “stand on the shoulders” of those past and find innovation easier (see, 

for instance, Romer 1990, Aghion and Howitt 1992), this may not be sufficient to offset 

increasing costs of generating knowledge as technological opportunity in a particular 

field diminishes (Evenson 1984, Evenson and Kislev 1976, Kortum  1997, Segerstrom 

1998).  Further, the fact that patenting gives monopoly rights over the rents from new 

ideas can give rise to increasing redundancy of R&D efforts when multiple firms pursue 

the same discovery (see Jones 1995, Kortum 1993, Reinganum 1984,1989). Not only can 

these factors enter directly as determinants of the rate of growth, but as Jones and 

Williams (2000) among others note, they dictate whether the market determined level of 

R&D is above or below socially optimal.4  

 

                                                 
1 See for example, Barro and Sala-I-Martin 1995; Romer 1987, 1990; Aghion and Howitt 1992; and 
Grossman and Helpman 1991. 
2 See, for example, Romer (1990), Segerstrom et al (1990). 
3 Aghion and Howitt (1998) counter, arguing that, measured as a share of GDP, R&D effort has been 
relatively constant, consistent with their extended model. 
4 As Jones and Williams note (2000) the “the standing on shoulders” effect implies socially sub-optimal 
levels of R&D investment while the is “step on toes effect” raise the private return above the social and 
imply above socially optimal levels of  investment in R&D 
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An increasingly sophisticated empirical literature attempts to directly estimate the 

knowledge production function using patents as a proxy for new knowledge. Jaffe and 

Trajtenberg (2002) and Griliches (1990) offer as stylized facts that in cross section 

patents are probably roughly proportional to R&D implying an elasticity of unity, while 

the “within” panel dimension suggests strongly decreasing returns to scale.5  The few 

studies in the second category (Hausman, Hall and Griliches 1984,1986; Blundell, 

Griffith and Windmeijer 2002), along with Blundell, Griffith and Van Reenen (1995) that 

looks at the impact of market structure on innovation, have contributed important 

advances in the theory of count data estimators in a panel context.  The latter two focus 

particularly on modeling dynamics and controlling for the unobserved heterogeneity that 

renders cross sectional estimates suspect.  In this sense, they parallel closely the recent 

literature on dynamic panel modeling with continuous dependent variables (Arellano and 

Bond 1991, Blundell and Bond 1998). Both issues are found to be of central importance 

in modeling the innovation process and generating consistent parameter estimates. 

 

All the panel studies confirm the stylized fact of decreasing returns to scale.  

Hausman, Hall and Griliches’s (1984) non-dynamic estimates of the elasticity of patents 

with respect to R&D are in the range of 0.3-0.6, depending on the technique employed.  

Hall, Griliches and Hausman’s (1986) estimates hover around .35 and are similar to those 

estimated in a dynamic context by Blundell, Griffith and Windmeijer (2002) of around 

0.5.  Using industry level panel data Kortum and Lerner (2000) find an elasticity of .48-

.52.  There thus seems to be support in the micro level within estimates for the more 

pessimistic view of increasing difficulty and congestion.    

 

Nevertheless, the firm level estimates, and to a lesser degree those at the industry 

level, may miss the spillover effects that one firm’s R&D may contribute to another firm 

or industries knowledge generation effort.  The literature on estimating the returns to 

R&D, for example, finds differences of several multiples between the private returns to 

                                                 
5 In cross section, Bound et. al (1984) introduce a wide variety of estimates, the most comparable being 
around .32-.38 and Pakes and Griliches (1980) offer an estimate of .61 although Griliches (1990) suggests 
that when accounting for reporting error, there is little evidence of diminishing return in cross section. See 
also Klette and Kortum (2002) for a discussion of the stylized facts around the patents and R&D. 
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R&D, estimated at the firm level, and those at the national level suggesting substantial 

spillovers.6  Jaffe (1986) also finds that firms whose research is in areas where there is 

much research activity by other firms generate, on average, more patents per dollar of 

R&D and he finds the magnitudes of the spillovers to be substantial. 

 

To date, there are very few investigations at the aggregate level that would more 

completely capture such spillovers and none are comparable to the micro studies.  Bottazi 

and Peri (2003) have estimated the R&D/patent relationship at the aggregate level using a 

cross section of European regions.  As in the other cross-sectional firm literature, they 

find an elasticity close to 0.9 and in addition, significant, although small, regional 

spillover effects within 300 kilometers.  Using an OECD panel on 17 countries, Furman, 

Porter and Stern (2002) more generally explore the relationship between a range of 

innovation inputs and institutions and patents but also do not offer parameters estimates 

comparable to the panel studies discussed above.   

 

In this paper we construct a large panel of advanced and developing countries and 

generate estimates for the R&D-patent relationship at the global level that are comparable 

to those at the micro level discussed above.  Including a large sample of emerging 

countries puts us somewhere between the count and continuous dependent variable 

literatures.  Only 6.5% of the sample has observations of zero value, just under half the 

number found in Blundell, Griffith and Windmeijer (2002), so clearly the issue of 

integers and zero values is reduced, yet not so small as to be dismissed altogether. We, 

therefore employ the estimators recently developed in both literatures.  This allows tests 

for robustness to the assumptions underlying the various estimators.  We find that 

regardless of the technique employed, there is a strong relationship between R&D effort 

at the global level and innovation with a long run elasticity surprisingly close to 1.   

 

We contribute to the understanding of the dynamics of knowledge creation.  Hall, 

Griliches and Hausman (1986) argue that, at the firm level, patenting occurs virtually 

                                                 
6 One strand of the empirical literature working broadly in the growth tradition has measured the returns to 
R&D using both micro and cross-country data.6   
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instantaneously, suggesting that much of R&D expenditures are dedicated to 

development as opposed to basic or applied research.  Blundell, Griffith and Windmeijer 

(2002), however find the long run elasticity substantially larger than the short run.  Since 

spillovers may occur only with some lag from the initial discovery, we may expect larger 

lags at the aggregate level.   In using both annual and quinquennial data, we find that in 

fact, the lags are quite long.   

 

We then divide the sample into OECD and the developed countries and identify 

significant and important differences in scale economies and very large differences in 

implicit returns to R&D between the two samples.  To examine the determinants of the 

differences in observed elasticities, we introduce interactively several variables likely to 

capture, especially, the degree of spillovers.  In this sense we broadly parallel the 

literature on National Innovation Systems (NIS)7 that focuses on how the deployment of 

human capital and financial resources in the various national institutions – universities, 

public think tanks, firms- and the interactions among these institutions affect the capacity 

of a country to generate knowledge.  Furman, Porter and Stern’s work on the OECD  

established that such factors often enter additively in determining the number of patents.  

Given the greater range of endowments, institutions, and institutional quality across our 

sample, we expect, and find, significant and important effects of these factors on the 

patenting elasticity.  

 

The remainder of the paper is organized as follows. Section 2 describes the data, 

section 3 outlines the econometric approach, and section 4 presents the main results 

regarding the relationship between patents and R&D expenditures. Section 5 examines 

elements of the NIS that may influence the corresponding elasticity. Section 6 concludes. 

 
 
 
 
 
 
 

                                                 
7 See Nelson 1993; OECD 1998, 2001; Lundvall et al. 2002, Furman et al 2002 
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II Estimating the Innovation Function 

 

Data 

Our dataset consists of a panel of 49 developed and developing countries from the 

1960s to the present. We first review the measures of innovation output and input.8  

 

Innovation Output: A large literature uses patents as an imperfect measure of innovation 

output although the limitations of the measure are well known (see for example, Griliches 

1990, Trajtenberg 2001, Jaffe and Trajtenberg 2002). Of perhaps greater concern for the 

present work is that patents granted by national agencies are not comparable due to 

differences in national standards, costs of applying for patents, levels of intellectual 

property protection, pecuniary benefits from patenting, and other country-specific 

institutional features. To ensure comparability we follow Jaffe and Trajtenberg (2002), 

Branstetter (2001), Furman, Porter and Stern (2002) and use the number of patents 

granted by the United States Patent and Trademark Office (USPTO).9  In the absence of a 

global patenting agency, the US remains the principal locus of patenting activity and the 

USPTO offers reliable panel data for the period 1963 to 2000 for a large number of 

countries. Granted patents are assigned by country of origin based on the country of 

residence of the first inventor.   

 

That said, countries may differ systematically in their propensities to apply for 

patents in the US.  Those with a large volume of exports to the US have a greater interest 

in patenting any invention that may be embodied in their exports.10  Similarly, country 

endowments and economic structure may also impact the ratio of innovations to patents: 

manufacturing in general may generate higher patents per innovative dollar than natural 

resource based sectors.  To control for these effects we include in our specifications the 

volume of merchandise exports to the US, drawn from the IMF Direction of Trade 

Statistics, and Leamer’s (1984) index of natural resources endowments, net exports of 
                                                 
8 See Lederman and Saenz (2003) for a complete discussion of the data. 
9 The U.S. PTO demands that the invention be “novel and nontrivial, and has to have commercial 
application” (Jaffe and Trajtenberg 2002, 3-4).  
10 See Trajtenberg (2001). 
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resource intensive products over labor force, constructed from the UN Statistics 

Department’s Commodity Trade Statistics (COMTRADE).  

 

Innovation Effort: Consistent with much of the microeconomic literature we employ real 

R&D expenditures as a measure of innovation effort.  The data are derived ultimately 

from national surveys that use as a common definition of expenditures that include 

“fundamental and applied research as well as experimental development.” 11  The data 

thus include not only the basic science expected in the more advanced countries, but also 

investments in the adoption and adaptation of existing technologies often thought more 

germane to developing countries.  The series are constructed based on underlying data 

published by UNESCO, the OECD, the Ibero American Science and Technology 

Indicators Network (RICYT) and the Taiwan Statistical Data Book.   

 

Though it would be desirable to study the evolution and efficiency of both private 

and public R&D, we work with aggregate R&D for several reasons.  First, the data 

sources divide R&D not into private and public R&D, but into productive and non-

productive sectors, the latter accounting for roughly 20% of the total.12  The definition of 

“productive sector” includes both public and private for profit and not-for profit firms 

while “non-productive sector” includes R&D financed or undertaken by the executive 

branch of government.   

 

Second, the productive/non productive split seems to occasionally lead to some 

critical issues in categorization.  For instance, if a public company finances its R&D from 

retained earnings, this will count as productive sector R&D.  If instead the same R&D is 

financed by a transfer from the treasury to the firm, it counts as “non-productive” R&D.  

For several countries in our sample, there were striking shifts in composition from one 

year to the next suggesting sensitivity to these accounting conventions.  By contrast, the 

total R&D series were reasonably stable. The final consideration is more prosaic: many 

                                                 
11 UNESCO Statistical Yearbook (1980) pg. 742. Definitions are common to the OECD, Ibero American 
Science and Technology Indicators Network  (RICYT), World Bank ,and Taiwan Statistical Yearbook and 
all are based on the Frascatti manual definition. 
12 The median for countries with both series is 21%. 
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developing countries tabulate only the aggregate values and hence to maintain the largest 

sample we use the most common definition.   

 

We describe the data in tables 1 and 2 and in figures 1, 2 and 3. Table 1 tabulates 

the basic descriptive statistics of all variables and table 2 the correlations among them13.  

Several facts merit attention. First, the patents variable ranges from 0 (Bolivia, Jamaica, 

Togo) to around 30,000 (Japan). 14  Similarly there are great differences in terms of R&D 

investment across countries. Figure 1 plots the overall relationship between patenting and 

R&D effort. Looking more closely, Figure 2 shows the same scatter for 2 groups of 

observations, those with less and more than 1000 patents.  Although some OECD 

countries have had bad years of patenting below 1000, the graphs effectively capture the 

differences in the OECD/non-OECD samples.  Both depict a clear relationship between 

patents and R&D expenditures. In addition to the strong relationship with log R&D, table 

2 shows patents to be positively correlated with the log of US trade and negatively 

correlated with natural resource abundance. 

 

Methodology 

The estimation of the links between innovative capacity and its outputs, measured 

as the number of patents, is not straightforward for several reasons. First, the nature of the 

patent variable as discrete and non negative but with a non negligible probability of being 

zero has, in the firm level literature, dictated the use of count-data models with an 

exponential specification under the assumption of either Poisson or negative binomial 

distributions (see Hausman, Hall and Griliches’s 1984 and Blundell, Griffith and 

Windmeijer 2002). However, the smaller number of zero-patent observations and 

generally greater patenting rates reduce somewhat the integer concerns underlying count 

models. Several recent studies at the country level treat the patent variable as continuous 

and estimate a standard dynamic log linear specification (see Botazzi and Peri 2003; 

Furman, Porter and Stern 2002).  In our sample, roughly 6.5 % of the observations are 

zeros- not negligible particularly in the LDC sample where they are concentrated,  but 

                                                 
13 Appendix table A.1 tabulates in detail the means of the variables by country as well as the number of 
observations per country 
14 Note that the US has been left out of the sample due to the difficulty of controlling for trade with itself.  
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low enough to justify alternative approaches. Both approaches seem to fit the data 

reasonable well, although for low levels of patents there seems to be an increase in 

variance in the log linear specifications.15  We explore both approaches here.  

 

The second issue arises from the desirability of some dynamic structure in the 

estimation. There is likely to be lag between the commitment of the R&D expenditures 

and the actual output derived from them. For this reason, Hall, Griliches and Hausman, 

(1986) investigate the existence of a lag structure in the patents-R&D relationship. 

Although they argue that there is no evidence of a long lag between R&D and patenting, 

past R&D history seem to add to the current year’s patent applications, although the 

effects are small. Additionally, Blundell Griffith and Windmeijer (2002) argue that there 

may be a feed-back effect between R&D expenditures and the patents generated by those 

expenditures. They develop an estimator which explicitly models the dynamics of the 

count process in the panel data taking into account that feed-back between patents and 

R&D.  

 

Each of the techniques employed in the literature offers advantages and 

drawbacks.  Our strategy is to explore the data with several of them to assess the 

robustness of our findings to their underlying assumptions.   

 

Static Modeling 

 

Within the context of static models we estimate variants of the standard 

specification used in the R&D-Patents literature (see Hausman, Hall, and Griliches 1984).  

As Blundell, Griffith and Van Reenen (1995) note, convenient specifications can be 

derived from a Cobb-Douglas technology production function such as 

 

iitit DRP αβ&=  

 

                                                 
15 Countries with 0 patents were assigned ln Patents=0. Regressions using the linear approach in following 
sections include a dummy variable for these observations.  
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where itP is the number of patents of country i in period t, itDR &  is the total expenditure 

in R&D of country i at time t, β is the elasticity relating the two, and iα is a fixed 

individual effect for country i. In the count-data context where zero values are of central 

concern we estimate 

 

itiititit
US

it LIUSDRP εαβ +∂+∂+= )lnln&lnexp( 21    (1a) 

 

In the context where zeros are less problematic, we estimate a log linear specification:   

 

itiititit
US

it LIUSDRP εαβ ++∂+∂+= lnln&lnln 21     (1b) 

 

In both cases, US
itP  is the patents count of country i at time t , R&D is the innovation 

input, US, the value of real merchandise exports towards the United States, LI is the 

Leamer index of natural  resource abundance, and iα captures country specific fixed 

effects.  

 

Dynamic modeling 

The introduction of dynamics and more generally of pre-determined regressors in 

both 1a and 1b adds complications. First, the inclusion of a lag dependent variable in 

equations 1a and 1b yields the usual inconsistent estimates using within group estimators 

(Nickel 1981).16 In the context of count data models, Chamberlain (1992) and 

Wooldridge (1997) develop a GMM estimator to deal with individual fixed effects when 

the regressors are pre-determined.  However, as Blundell, Griffith and Windmeijer (2002) 

argue, the GMM estimators show small sample bias when the time series show a high 

degree of persistence as is the case with expenditures with R&D.  In order to jointly deal 

with the existence of country fixed effects and predetermined regressors more generally, 

they suggest an estimator that measures the fixed effect component iα  directly.  In the 

context of innovation functions at the firm level, the key unobserved individual 
                                                 
16 Fixed effects estimators create a correlation between the de-meaned variables and the regression error 
implying a bias of order 1/t. 
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heterogeneity comes from the large differences in the stock of knowledge among firms so 

the capacity to innovate should be captured by the past history of innovations defined as 

the pre-sample mean of the dependent variable, ∑ −

= −=
1

0 0
1 TP

r
US

ri
US

ip P
TP

P   where TP is the 

number of pre-sample observations.  The approach is also valid at the country level and 

has the additional advantage that, since normally the patents series are more complete 

than the R&D series, a substantial number of observations can be dedicated to calculating 

the pre-sample mean without restricting the effective sample size used for estimation.   

 

An additional complication specific to count-data models is the way the lagged 

dependent variable enters the specification. Blundell, Griffith and Windmeijer (2002) 

argue that including the LDV as a logged term within the exponential leads to problems 

transforming observations with value zero, and can also lead to greater than unity 

coefficients on the lagged dependent variable that imply an explosive time path for 

patents. They therefore propose introducing the lag of the dependent variable linearly, 

hence giving the name “linear feedback model,” which corresponds to the following 

specification:  

 

iti
US

ipititit
US

it
US

it PLIUSDRPP εαφβρ ++∂+∂++= − )lnlnln&lnexp( 211   (2a) 

 

Estimating 1b in a dynamic linear dynamic panel context has been extensively 

treated elsewhere (see Arellano 2003). From the empirical point of view the recent 

growth literature provides numerous examples of dynamic panels in the presence of very 

persistent regressors in order to estimate an specification such as 

 

     itititit
US

iti
US

it LIUSDRPP εβρα +∂+∂+++= − lnln&lnlnln 211    (2b) 

 

Very briefly and closely following Anderson and Hsiao (1982), Arellano and Bond 

(1991) and Caselli et. al. (1996) in the growth literature, we difference the data to 

eliminate unobserved fixed effects αi yielding  
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itititit
US

it LIUSDRP εβ ∆+∆∂+∆∂+∆=∆ lnln&lnln 21 ,   (3) 

 

However, unless the idiosyncratic error follows a random walk, this differencing 

necessarily gives the transformed error a moving-average, MA, structure that is 

correlated with the differenced lagged dependent variable. This can be overcome by 

using instruments dated t-n and earlier.  Arellano and Bond (1991) employ lagged levels 

as a proxy for differences in a Generalized Method of Moments (GMM) context.  

However, in the context where explanatory variables show little variation over time, as is 

the case with R&D here and with schooling or natural resource endowments in growth 

regressions, levels are often poor instruments. Bond, Hoeffler and Temple (2001) show 

that this “weak instruments” problem can be severe in cross-country growth regressions 

with panel data.  For this reason, we follow Blundell and Bond (1998), Arellano and 

Bover (1995), and Levine, Loayza and Beck (2000) in employing a system estimator that 

combines (3) with equation (2b) in levels, using lagged differences of the endogenous 

variables as instruments. Finally we make use of the procedure proposed by Windmeijer 

(2000) to minimize the small sample bias in the standard errors from the efficient two 

step estimation. 

  

Each estimating technique implies a different approach to the data. The static 

estimates of equations 1a and 1b allow us to maximize the number of observations used; 

however they neglect the possible dynamics of the patents-R&D process and the 

endogeneity of the R&D variable. Estimation of dynamic equation 2a is also undertaken 

using the same data periodicity although the sample is restricted somewhat since we now 

require that each country have at least two consecutive observations. Finally the GMM 

estimations require additional lags for use as instruments which, for most of our sample, 

are not available due to gaps in the data.  For this reason we use quinquennial averages 

since 1975.  

 

A priori, our preferred estimates are the exponential linear feedback model and 

the log linear GMM estimation on the grounds that they control for individual 

heterogeneity and possible endogeneity of the explanatory variables. However, whenever 
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appropriate we present alternative techniques using the same time span and sample for 

the sake of comparability.  

 

III. Results 

 
Static Estimates 

We begin following the existing firm level literature by estimating static 

specifications.  Because we want to be broadly comparable with the dynamic estimates 

that follow, we introduce a static version of the PSM estimator as well.  

 

Table 3 presents estimates of equations 1a and 1b  using yearly data from 1976-

2000 under both the Negative Binomial and Poisson distributions, using the naïve levels, 

the Within Group (WG), and the Pre Sample Mean (PSM) specifications.17  For 

comparison, we begin in the first panel with a linear estimator under the assumption that 

the aggregate data does not suffer “too much” from zeros and integer issues: the 

dependent variable is log of patents and a dummy variable is included for those 

observations with 0 patents.  

 

The first point to highlight is that regardless of technique, strong evidence 

emerges for an aggregate innovation production function mapping the inputs to outputs of 

innovation.  Further, the controls for US exports are generally of expected (positive)sign 

but the control for natural resources is highly unstable in sign and intermittently 

significant.   

 

The test for over dispersion- that the conditional variance of patent counts in fact 

exceeds the mean- is significant in all of the Negbin regressions suggesting that of the 

two distributions, it is preferred over the Poisson model.  Nonetheless, with a few notable 

exceptions, the results tell a broadly consistent story.  The levels specification yields 

estimates of the elasticity of patents with respect to R&D ranging from 1.00 to 1.14 

across distributional assumptions.  Controlling for heterogeneity through either the WG 

                                                 
17 We use data on patents between 1963 and 1975 to construct the pre sample mean. 
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or PSM lowers the coefficient, with the exception of the WG Poisson which, at 1.65, 

jumps to 50% above the highest of the levels coefficients.  With this exception, the 

pattern of estimates-Negbin falling in between the levels and Poisson- corresponds 

closely to that predicted by Blundell, Griffith, and Windmeijer (2002) in the context of 

endogenous regressors: the levels estimator is biased upwards and the WG estimator is 

biased downwards and the superior PSM lying in between.  In this scenario, the true 

value is likely to be bracketed on the high end by the similar Negbin and Poisson 

estimates (.78 and .86. respectively) and the linear PSM of .44 is at the low end.  The 

substantially lower linear estimates under the WG and PSM estimators cast doubt on the 

idea that aggregate data obviates the issues of integers and zeros.  The instability of the 

WG estimates, and the fact the WG Negbin is the only specification to yield a 

counterintuitive sign on US exports call the robustness of the estimator somewhat into 

question in this context.   

 

Dynamic Estimates 

Table 4 presents the dynamic estimates of the innovation function.  In the first 

two panels, we present the linear and exponential models, analogous to the previous 

exercise although, to recall, the linear feedback model has only been developed in the 

exponential case for the Poisson distribution.  It is important to note that in the linear 

models the ln R&D coefficient retrieves the short run elasticity which needs to be 

transformed in standard fashion to a long run elasticity whereas in the exponential models 

the coefficient already gives the long run elasticity.  This implies a lack of direct 

comparability of the ln R&D coefficients across specifications and hence we focus on the 

short and long run elasticities.  Since including lagged variables implies a loss of a 

quarter of the observations, the actual numerical results between the dynamic long run 

coefficients and the ln R&D coefficients in the static case are not strictly comparable.  

Nonetheless, it is striking is that the same patterns of relative magnitudes of the long run 

coefficients emerge again with the ordering of levels, PSM and WG holding in the linear 

case and the pattern not holding in the Poisson case due to, again, an unusually high 

coefficient on the WG estimator.  With the exception of this estimate, the long run 

elasticities are broadly similar in magnitude to those of the static case. 
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Of more interest are the comparisons within the dynamic specifications.  In 

particular, the second two panels work with five year averages necessary to generate the 

instruments for the system GMM estimator.  The specification is clear of second order 

serial correlation and passes the Sargan test for over identifying restrictions. We also 

replicate the exponential exercises at quinquennial frequency, for comparability with the 

linear specifications and with the estimates at annual frequency.  

 

Though the long run elasticity differs across models, there are also impressive 

commonalities.  The linear and exponential estimates at 5 year frequency are strikingly 

similar to the OLS, GMM, levels Poisson and PSM ranging between .86 and 1.  The 

exponential levels and PSM estimates at annual frequency also track closely their 

quinquennial analogues. The annual levels and PSM linear specifications are 

substantially lower at .71 and .54 and the WG specifications are especially low, with the 

exception of the 2.64 on the annual exponential estimator, showing the same highly 

erratic behavior across estimation technique seen in the static regressions. Again, in the 

annual exponential and quinquennial linear cases, they generate a counterintuitive 

negative sign on US trade which also casts some doubt on their reliability.  If, for these 

reasons and for the usual bias reasons associated with fixed effects in a dynamic context, 

we discount the WG estimator, and hold aside the linear PSM at annual frequency, all 

estimates are found between .71 and 1.06 with the bulk clustered around .88-1.06. 

 

These results strongly support a relationship between R&D and patents at the 

economy wide level.  Further, they suggest elasticities that are substantially higher than 

those at the firm level and overall, consistent with constant returns to scale in the 

production of patents. 

 

Advanced vs. developing countries   

 
Tables 5 and 6 present the summary statistics for the variables that may influence 

the magnitudes of the patenting elasticities in the high income and low income samples.  
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As mentioned earlier, the vast majority of emerging countries have far below 1000 

patents and the mean is a mere fraction of that found in the advanced countries which 

never shows any zeros.     

 

Table 7 breaks the sample into OECD and developing countries.18  We again 

report the results for our two preferred estimators although we now have clearer reasons 

to choose one over the other.  Of the 6.5 % of zero patent values in the sample, all are 

found among the developing countries.  Hence, in theory, the LFM estimator should be 

preferable for this sample and the GMM for the advanced countries.  In practice, there is 

little difference in the estimates for the OECD-.95 for the LFM and 1.04 for the GMM- 

offering somewhat stronger evidence for constant returns in the advanced countries.   

 

The suspicion that, for some reason, the higher returns to scale arise from using 

aggregate as opposed to private sector R&D spending turns out not to be justified.  Using 

a reduced sample for the OECD of countries with complete data on R&D done by the 

productive sector versus the non productive sector (including government) still generates 

an elasticity very close to unity for both aggregate- and productive-sector investment.   

 

Since our aggregate sample spans a wide variety of sectors and countries which 

cannot be seen as the aggregate counterpart to the US manufacturing firm level data, 

asserting that the gap between this finding and the bulk of the micro findings captures 

spillovers is probably too heroic.  Nor does a finding of constant returns to scale in the 

production of patents necessarily imply the same is true of knowledge generally.  Still, 

the robustness to technique, sample and proxy for variable of the CRS finding for the 

OECD sample is suggestive that there we cannot rule out scale economies emerging at 

the aggregate level that may offset the increasing difficulty and/or patent race effects that 

might be found at the level of the firm. 

 

The results from the developing countries are strikingly different, however, with 

the LFM for the developing countries, yielding a coefficient of .7 and the probably 

                                                 
18 OECD includes Korea but excludes Mexico which looks far more like the poor country sample.  
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inappropriate GMM, .9.  Given the relatively small standard errors, the former estimate 

suggests substantial decreasing returns to scale.   

 

The final row of table 8 provides some “back of the envelope” calculations of the  

“return to R&D measured in patents” by multiplying the elasticities by the ratio of the 

average levels of patents to average level of R&D.  If we crudely assume that patents 

have equal average value across samples, then we can calculate the relative rate of return 

to R&D.  For the OECD sample, we find only a slight increase above those emerging 

from either the Hall et al. or Griffith et al. estimates at the micro level.  This strongly 

contrasts with direct estimates of high social rates of return not appropriated privately 

summarized by Jones and Williams (1998) which could well reflect the lack of 

comparability among data sets.  Staying within our sample, however, it can be said that 

the OECD countries show a rate of return that, in the more reliable LFM estimates, is 

higher by a factor of 5.  If we assume that interest rates are probably higher in the 

developing world than in the OECD and hence the private rate of return should also be 

higher, developing countries exhibit decreasing returns to scale and substantially fewer 

spillovers than those enjoyed in the advanced countries.  

 

IV. Assessing and Explaining the Efficiency of Innovation 

 

The striking differential in elasticities and implicit rates of return raises the 

question as to what elements of LDC national innovation systems are giving rise to this 

result.  The greater variance in the nature and quality of the institutions comprising the 

NIS across poor and rich countries offers the possibility of estimating their impact on 

how an economy uses R&D to produce knowledge.   

 

Data 

We experiment with four variables, interacting them with R&D to see which may 

raise or lower the elasticity. Again, we describe the data in tables 1,2 and figure 3. As 

tables 5 and 6 show, the means of all of the variables are also substantially lower for the 
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non -OECD than is the case with the OECD although the amount of overlap is quite 

large.   

 

Years of Education:  Recent literature stresses the complementarities between 

technological progress and education. In Lucas (1988), for instance, knowledge spillovers 

involve interactions among smart people (see also more recently Acemoglu and Zilibotti 

2001).  We employ the standard measure of the quality of human capital, from the Barro 

and Lee (2000) data base, namely the average years of schooling at the beginning of each 

five year period.   

 

Perceived Quality of Academic Institutions: Low quality researchers, or even good 

quality researchers housed in institutions with poor incentive systems are less likely to 

produce patentable innovations for a given allocation of resources and would be less 

likely to detect possibilities for building on other individuals’ discoveries.  The World 

Economic Forum’s World Competitiveness Report (2000) provides the average of the 

subjective rating by entrepreneurs on a 7 point scale of the perceived quality of their 

research institutions.  

 

Level of Collaboration between the Research Institutions and the Private Sector: The 

literature increasingly stresses the importance of networks and collaboration across the 

various elements of the NIS as essential to the efficiency of generating new ideas, and to 

building on existing ones. Again, the World Competitiveness Report asks entrepreneurs 

to rank on a seven-point scale the level of collaboration among the private sector and 

research institutions.  

 

Intellectual Property Rights (IPRs):  IPRs, in theory, can reduce the flow of spillovers by 

making it more costly to create new inventions building on others’ discoveries.  On the 

other hand, weak intellectual property protection within a country may lead firms to 

simply hide their discoveries preventing spillovers all together. Thus, the protection and 

revelation aspects of IPRs have countervailing effects with unclear ex ante impact.  The 

measure is taken from Park (2001) who combines indexes on patents, copyrights and 
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trademarks into one IPR measure.  These sub-indices in turn are ranked on coverage of 

protection, duration of protection, restrictions on exclusiveness of property rights, 

membership in international treaties, and enforcement of rights on a scale from zero to 

one, and then aggregated to form an index from 1 to 5.  The variable is available only at 

quinquennial frequency, but among proxies available, it is the only one with temporal 

variation. 

 

As is clear, the quality of these proxies is mixed, ranging from standard measures 

to very subjective evaluations of difficult to measure phenomena.  Further, the subjective 

measures of quality of institutions and collaboration between the research institutions and 

the private sector lack a time dimension and hence offer limited variation. Both the years 

of education and the intellectual property indexes are reported every five years.  Since all 

of these variables appear correlated with level of development, we add to our core control 

variables and interactive term with GDP per capita.  Thus, the interpretation of the 

interactions of our proxies is net of any effect due to the level of development.  

 

Results 

 
Given the lack of temporal variation and the potential difficulty of introducing 

several interactive variables simultaneously, we begin with the non-dynamic version of 

our preferred PSM specification. We then add back the dynamics and, despite the few 

degrees of freedom, we run the exercise again with the GMM for completeness.  

 

The results with the static specification suggest that our variables do have the 

power to explain substantial differences in the elasticity.  In the first column of table 9 the 

significance of the interactive with log GDP and its positive sign confirm the results of 

the previous section that the elasticity is higher for OECD countries than for developing 

countries.   

 

Columns 2-5 add the four NIS variables sequentially.  All enter strongly 

significantly with level of education and the quality of research institutions emerging as 
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the most important.  In all cases, the coefficient on the log GDP interactive variable drops 

by at least a third.  Since, as table 2 suggests there is a high degree of correlation even 

within the NIS variables, Column 6 includes them all simultaneously. All preserve their 

significance although the quality of academic institutions and the level of education 

emerge as the most quantitatively important.  The negative sign and marginal 

significance of the collaboration variable may arise because of the high correlation of the 

two subjective variables and their lack of variance over time.  In the next two columns, 

we introduce them separately and confirm their significance and positive influence 

individually.  

 

In the full LFM specification (table 10), all variables retain their signs and overall 

level of magnitude although the two subjective variables lose substantial significance. In 

the specifications with all NIS variables included, only education emerges as significant 

with IPRs retaining its sign but being significant only at the 15% level.  The subjective 

interactive dummies maintain sign but not significance.  Dropping them, the IPR variable 

appears again significant.  Together, IPRs and education levels reduce the coefficient on 

the GDP/capita interactive term by over half from .029 to .013 suggesting that they 

account for much of the difference in elastic observed across income groups.  The results 

for the GMM dynamic specification (table 11) are strikingly similar with, again, 

education and IPR entering significantly separately but only education maintaining its 

level of significance when combined.  Again, given the few degrees of freedom, this is 

perhaps not surprising.  Though admittedly imperfect, the proxies for elements of the NIS 

appear to be significant determinants of the rate at which R&D is converted into patents.   

 

V. Conclusions 

 

Using a new global data base on patents and innovation inputs and drawing on 

recent advances in dynamic estimation techniques, this paper confirms at the country 

level the recurrent micro-level finding of a strong relationship between expenditures in 

R&D and innovation output measured by US patents granted.  The results are broadly 

robust to estimation technique and imply a unitary elasticity for OECD countries or 
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constant returns to scale.  This contrasts with firm level estimates using the same 

techniques that imply decreasing returns to scale.  One interpretation is that the increasing 

difficulty of invention and redundant innovation efforts brought on by patent races 

observed at the micro level are offset by spillover effects only observable at higher levels 

of aggregation.  The lack of comparability of the aggregate and micro samples leaves this 

as a conjecture only. 

 

What is very striking is both the lower elasticity found among developing 

countries (suggesting strong decreasing returns to scale) and implicit rates of return that 

are perhaps 20% of those found in the OECD.  We find that several elements of the 

national innovation system contribute to the differing elasticities observed. Education, 

and the security of intellectual property rights emerge robustly as important factors and in 

non dynamic specifications, the quality of research institutions and their interaction with 

the private sector enter as well.  
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Table 1: Descriptive statistics 

Variable Mean 
Std. 
Dev. Min Max 

% of 
zeros 

Patents 1132 3509 0 31104 6.45 
ln R&D  20.90 2.33 11.25 25.82  
ln US trade 15.20 1.68 7.82 19.05  
Natural Resources 0.21 1.66 -4.74 14.88  
Quality of Academic Institutions 4.93 0.97 2.80 6.30  
Collaboration with the Private Sector 3.97 0.95 2.54 5.78  
Education 7.05 2.23 2.21 11.84  
IPR 2.93 0.94 0.33 4.57  
ln (Mean Patents) 3.48 2.70 -2.56 8.39   
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Table 2: Correlations 
 

 Patents ln R&D UStrade Natural 
Res. 

ln (Mean 
Patents) 

Quality 
Acad. 
Inst. 

Coll. 
Private 
Sector 

Educ. IPR 

          
Patents 1.00         
ln R&D  0.51 1.00        
ln US trade 0.47 0.69 1.00       
Natural Resources -0.27 -0.16 -0.07 1.00      
ln (Mean Patents) 0.27 0.66 0.35 0.01 1.00     
Quality of Academic Institutions 0.32 0.59 0.34 0.08 0.90 1.00    
Collaboration with the Private Sector 0.27 0.51 0.34 0.27 0.64 0.71 1.00   
Education 0.30 0.63 0.30 -0.07 0.64 0.64 0.70 1.00  
IPR 0.47 0.84 0.61 -0.07 0.69 0.61 0.60 0.64 1.00 



 27

Table 3: Static Estimates Patents on R&D  
 
 

Observations 636
Countries 49
Period 1976-99

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln R&D 1.01 *** 0.36 *** 0.44 *** 1.14 *** 0.56 *** 0.78 *** 1.00 *** 1.65 *** 0.86 ***

(0.05)     (0.04)     (0.05)     (0.03)     (0.04)     (0.06)     (0.03)     (0.01)     (0.04)     
ln US trade 0.17 *** 0.25 *** 0.14 *** 0.11 *** -0.29 *** 0.14 *** 0.19 *** 0.04 *** 0.22 ***

(0.05)     (0.07)     (0.03)     (0.03)     (0.05)     (0.03)     (0.03)     (0.01)     (0.02)     
Natural Resou 0.05 *** -0.10 *** -0.02 0.06 *** 0.00 0.00 0.05 *** -0.01 *** 0.01

(0.02)     (0.02)     (0.03)     (0.02)     (0.02)     (0.01)     (0.01)     (0.00)     (0.01)     
ln (Mean Patents) 0.61 *** 0.33 *** 0.11 ***

(0.04)     (0.04)     (0.04)     

Over-Dispersion 0.65 *** 0.28 *** 0.50 ***

(0.04)     (0.01)     (0.06)     (0.04)     

*Significant at 10%, ** Significant at 5%, *** Significant at 1%

PSM

Note: The dependent variable in the linear specifications is log Patents. We also include an dummy for those
countries with no Patents. The dependent variable in the exponential specification is the count of Patents. Robust
standard errors were estimated in all the specifications. All specifications include time dummies. WG and PMS
refer to the within-group and the pre-sample mean estimations respectively.  

WG PSM Levels WGLevels WG PSM Levels

Linear Exponential
Negbin Poisson
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Table 4: Dynamic Estimates: Patents on R&D  
 

Annual Five Years 
Observations 482 105
Countries 46 43
Period 1978-99 1985-99

Patents(-1) 0.95 *** 0.62 *** 0.91 *** 0.32 *** 0.41 *** 0.45 *** 0.82 *** 0.26 *** 0.62 *** 0.46 *** 0.47 0.54 ***

(0.02)     (0.03)     (0.24)     (0.09)     (0.08)     (0.06)     (0.13)     (0.05)     (0.12)     (0.09)     (0.30)     (0.11)     
ln R&D 0.03 0.12 *** 0.03 1.06 *** 2.64 *** 0.91 *** 0.18 *** 0.23 *** 0.37 ** 0.91 *** 0.16 0.88 ***

(0.02)     (0.03)     (0.02)     (0.04)     (0.37)     (0.07)     (0.07)     (0.06)     (0.15)     (0.16)     (0.10)     (0.12)     
ln US trade 0.02 0.13 ** 0.03 * 0.19 ** -0.24 0.22 ** 0.11 *** -0.06 *** 0.14 ** 0.29 *** 1.38 *** 0.28 ***

(0.01)     (0.06)     (0.02)     (0.10)     (0.19)     (0.12)     (0.02)     (0.02)     (0.05)     (0.06)     (0.25)     (0.08)     
Natural Resources 0.00 -0.04 * -0.01 0.09 *** 0.03 * 0.07 ** 0.15 -0.19 0.01 0.01 -0.28 *** 0.01

(0.01)     (0.02)     (0.02)     (0.02)     (0.02)     (0.04)     (0.11)     (0.13)     (0.01)     (0.01)     (0.06)     (0.01)     
ln (Mean Patents) 0.04 *** 0.10 0.06

(0.02)     (0.07)     (0.05)     

Long-Run  Elast.  of R&D 0.71 0.33 0.37 1.06 2.64 0.91 1.00 0.31 0.96 0.91 0.16 0.88
Short-Run  Elast. of  R&D 0.03 0.12 0.03 0.71 1.56 0.50 0.18 0.23 0.21 0.50 0.09 0.40

Sargan Test (p-value) 0.63
First Order (p-value) 0.24
Second Order (p-value) 0.23

*Significant at 10%, ** Significant at 5%, *** Significant at 1%

Note: The dependent variable in the linear specifications is log Patents. We also include an dummy for those countries with no Patents. Robust standard errors
were estimated in all the specifications. The dependent variable in the exponential specification is the count of Patents. The exponential models were computed
using EXPEND (see Windmeijer 2000), whereas the linear models were estimated in Stata. For the PSM models we include two lags of the dependent variable in
set of instruments.  The GMM system estimator used two lags of the variables and  first differences to instrument. All the specifications include time dummies.  

GMM Levels WG PSMWG PSM OLS WGLevels WG PSM Levels

Annual Five Years
Linear Exponential Linear Exponential
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Table 5: OECD Statistics 
 

Observations=346 Mean Std. Dev. Min Max % of zeros
      
Patents 1975 4560 1 31104 0
ln R&D  22.3 1.58 18.88 25.8  
ln US trade 15.7 1.53 12.73 19.0  
Natural Resources 0.28 2.08 -3.69 14.9  
Quality of Academic Institutions 5.53 0.62 4.10 6.3  
Collaboration with the Private Sector 4.53 0.75 2.92 5.8  
Education 8.32 1.71 3.27 11.8  
IPR 3.53 0.56 1.98 4.6  
ln (Mean Patents) 5.21 2.15 1.26 8.4   

 
Table 6: non-OECD 

 
Observations=290 Mean Std. Dev. Min Max % of zeros
      
Patents 34 91 0 754 14.40%
ln R&D  19.23 1.95 11.25 22.80  
ln US trade 14.64 1.67 7.82 18.46  
Natural Resources 0.13 0.91 -4.74 5.07  
Quality of Academic Institutions 4.23 0.82 2.80 6.20  
Collaboration with the Private Sector 3.30 0.71 2.54 5.30  
Education 5.53 1.79 2.21 9.82  
IPR 2.22 0.80 0.33 3.90  
ln (Mean Patents) 1.41 1.60 -2.56 4.13   
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Table 7: Elasticities: OECD vs. non-OECD  
 

Model Periodicity Total OECD Non-OECD
Static

Linear PSM Annual 0.44 *** 0.82 *** 0.14 ***

(0.05)    (0.05)    (0.02)         
Exponential PSM Annual 0.78 *** 0.83 *** 0.22 ***

(0.06)    (0.04)    (0.03)         
Dynamic

Linear GMM Quiquenial 0.96 *** 1.04 *** 0.89 ***

(0.09)    (0.06)    (0.11)         
Exponential PSM Annual 0.91 *** 0.95 *** 0.70 ***

(0.06)    (0.04)    (0.12)          
 
 

Table 8: Returns to R&D 
 

Hall et al 
(1986)

Griffit et al 
(2002)

LFM GMM

Total OECD NON-OECD Total OECD NON-OECD
Firms 642 407
Patents 35 35 1132 1975 34 1097 1831 119
R&D Millions of Dollars of 1976 21.48 35.00
R&D $M of 1995 49.91 81.30 9010 12050 722 8320 13700 1110
R&D/Patents 1.43 2.32 7.96 6.10 21.24 7.58 7.48 9.33
Correction Applied/Granted 0.65 0.65
R&D/Patents (Corrected) 2.19 3.57
Elasticity 0.3 0.506 0.91 0.95 0.7 0.98 1.04 0.9

Implied Returns to R&D 13.68% 14.16% 11.43% 15.57% 3.30% 12.92% 13.90% 9.54%  
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Table 9: NIS Efficiency Static Negative Binomial with Pre-sample mean  
 
 

Annual
Observations 636
Countries 49
Period 1976-99

ln R&D 0.366 *** 0.155 *** 0.314 *** 0.372 *** 0.301 *** 0.135 *** 0.188 *** 0.300 ***

(0.03)  (0.01)  (0.03)  (0.03)  (0.03)  (0.01)  (0.04)  (0.05)  
ln US trade 0.262 *** 0.324 *** 0.280 *** 0.231 *** 0.316 *** 0.331 ** 0.320 *** 0.288 ***

(0.03)  (0.04)  (0.04)  (0.02)  (0.03)  (0.03)  (0.03)  (0.05)  
Natural Resources -0.033 ** -0.061 ** -0.056 * -0.075 *** -0.004 * -0.060 ** -0.060 ** -0.055 **

(0.02)  (0.03)  (0.03)  (0.02)  (0.00)  (0.03)  (0.03)  (0.03)  
ln GDPcap 0.028 *** 0.024 *** 0.021 *** 0.013 ** 0.018 ** 0.011 ** 0.008 ** 0.006 **

(0.01)  (0.01)  (0.05)  (0.01)  (0.09)  (0.01)  (0.00)  (0.00)  
ln (Mean Patents) 0.210 *** 0.174 *** 0.216 *** 0.229 *** 0.225 ** 0.184 *** 0.207 *** 0.233 ***

(0.04)  (0.04)  (0.05)  (0.04)  (0.05)  (0.04)  (0.04)  (0.04)  
Quality 0.097 *** 0.115 *** 0.065 ***

(0.03)  (0.03)  (0.01)  
Colaboration 0.054 *** -0.049 * 0.025 ***

(0.02)  (0.03)  (0.00)  
Education 0.068 *** 0.053 *** 0.045 *** 0.050 ***

(0.02)  (0.02)  (0.01)  (0.00)  
IPR 0.021 *** 0.014 ** 0.015 *** 0.016 ***

(0.01) (0.01) (0.01) (0.00)
Note: The dependent variable is the count of Patents. Robust standard errors were estimated in all the
specifications. All specifications include time dummies.  
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Table 10: NIS Efficiency LFM Estimator 
 

Annual
Observations 482
Countries 46
Period 1976-99

Lagged Patents 0.419 *** 0.400 *** 0.440 *** 0.479 *** 0.409 *** 0.478 ***

(0.07)    (0.06)    (0.07)    (0.08)    (0.07)    (0.08)    
ln R&D 0.260 ** 0.182 * 0.220 * 0.376 *** 0.260 ** 0.350 ***

(0.13)    (0.11)    (0.12)    (0.12)    (0.13)    (0.11)    
ln US trade 0.290 *** 0.330 *** 0.300 *** 0.222 *** 0.315 *** 0.260 ***

(0.08)    (0.08)    (0.11)    (0.07)    (0.11)    (0.08)    
Natural Resources -0.014 -0.037 -0.036 -0.046 * -0.008 -0.044

(0.02)    (0.04)    (0.03)    (0.03)    (0.01)    (0.05)    
ln GDPcap 0.029 *** 0.029 *** 0.026 *** 0.018 *** 0.027 ** 0.013 **

(0.01)    (0.01)    (0.01)    (0.00)    (0.01)    (0.01)    
ln (Mean Patents) 0.154 ** 0.120 ** 0.162 *** 0.097 ** 0.147 ** 0.098 **

(0.07)    (0.06)    (0.06)    (0.05)    (0.07)    (0.04)    
Quality 0.034

(0.02)    
Colaboration 0.023

(0.02)    
Education 0.049 ** 0.058 ***

(0.02)    (0.02)    
IPR 0.014 ** 0.010 *

(0.07)  (0.01)  
Note: The dependent variable is the count of Patents. Robust standard errors were estimated in all
the specifications. All specifications include time dummies.  
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Table 11: NIS Efficiency GMM Estimator 
 

Observations 105
Countries 43
Period 1985-99

Lagged Patents 0.580 *** 0.634 *** 0.583 *** 0.603 *** 0.586 *** 0.534 ***

(0.14)   (0.17)   (0.18)   (0.14)   (0.12)   (0.16)   
ln R&D 0.147 * 0.071 0.179 0.057 0.127 0.118

(0.08)   (0.06)   (0.13)   (0.05)   (0.11)   (0.10)   
ln US trade 0.229 *** 0.274 *** 0.204 *** 0.322 *** 0.201 *** 0.237 ***

(0.06)   (0.08)   (0.07)   (0.08)   (0.07)   (0.07)   
Natural Resources -0.011 0.001 -0.012 -0.026 0.013 -0.020

(0.03)   (0.00)   (0.01)   (0.02)   (0.01)   (0.02)   
ln GDPcap 0.013 *** 0.012 * 0.009 * 0.007 ** 0.010 *** 0.010

(0.00)   (0.01)   (0.01)   (0.00)   (0.00)   (0.01)   
Quality 0.018

(0.01)   
Colaboration 0.025

(0.02)   
Education 0.047 *** 0.037 ***

(0.00)   (0.01)   
IPR 0.010 *** 0.003

(0.00)   (0.00)   
Sargan Test (p) 0.88 0.85 0.86 0.90 0.99 1
First Order (p) 0.51 0.35 0.24 0.15 0.18 0.11
Second Order (p) 0.22 0.27 0.23 0.30 0.29 0.32
Note: The dependent variable is log Patents. Robust standard errors were estimated in all the
specifications. All specifications include time dummies.The GMM system estimator used two lags of
the variables and  first differences to instrument.  
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Annex 1: Countries in the sample 

Code N Patents R&D US trade Natural 
Res. 

Quality 
Acad. 
Inst. 

Coll. 
Private 
sector 

Edu. IPR 
Ln(Mean 
Patents 
60-75) 

ARG 14 26.36 20.58 14.43 0.64 3.40 2.71 7.64 2.59 3.09 
AUS 11 420.73 22.11 15.26 2.26 5.90 4.84 10.14 3.37 5.04 
AUT 20 336.45 21.72 14.14 -0.76 5.60 4.81 8.30 4.09 5.26 
BOL 8 0.38 16.97 12.23 0.21 2.80 2.66 5.13 2.19 0.96 
BRA 10 53.40 22.27 16.01 0.09 4.40 3.03 3.81 2.21 2.74 
CAN 22 1723.91 22.67 18.44 2.29 5.70 4.81 10.51 2.95 6.95 
CHE 10 1231.50 22.57 15.22 -1.70 6.30 5.15 9.32 3.55 6.98 
CHL 16 5.50 19.26 14.31 1.10 4.30 3.77 6.79 2.57 1.31 
CHN 5 66.40 22.45 17.95 -0.01 4.50 4.00 5.61 1.55 1.98 
COL 7 5.71 18.88 15.07 0.25 3.70 2.98 4.59 2.25 1.59 
CRI 10 1.70 16.88 14.08 0.54 4.80 3.66 5.44 1.61 -0.08 

DEU 10 7508.50 24.78 17.43 -1.36 5.90 5.04 9.57 3.79 8.39 
DNK 21 205.67 21.52 14.46 0.77 5.30 4.52 9.57 3.69 4.83 
ECU 7 1.14 16.50 14.47 0.76 3.10 2.60 6.19 2.21 -0.62 
EGY 10 1.80 20.84 13.36 -0.13 4.30 3.12 3.97 1.99 0.48 
ESP 19 128.42 21.98 15.13 -0.77 4.80 3.24 5.91 3.57 4.06 
FIN 20 292.55 21.54 14.21 1.85 6.30 5.78 8.83 3.18 3.92 

FRA 22 2642.77 24.11 16.46 -0.73 6.20 4.59 7.32 3.88 7.47 
GBR 18 2647.83 23.77 16.98 -0.63 6.10 4.73 8.68 3.54 7.93 
GRC 14 9.43 19.53 13.09 -0.54 4.10 2.92 7.04 2.48 2.18 
HUN 5 41.40 19.62 13.85 -0.10 5.20 3.59 8.67 3.37 3.50 
IDN 12 2.08 19.17 15.74 0.22 3.70 3.14 3.35 0.41 1.55 
IND 17 18.59 21.21 15.13 -0.01 5.20 2.76 3.31 1.56 2.53 
IRL 21 45.52 19.98 14.50 0.92 5.60 4.77 8.10 3.07 2.55 
ISR 16 346.25 21.43 15.24 -1.29 6.20 4.80 9.08 3.57 3.98 
ITA 23 1053.87 23.00 16.38 -1.52 4.60 3.30 5.91 3.93 6.35 

JAM 5 0.60 14.31 13.02 -0.09 4.50 3.10 3.81 2.86 -0.08 
JOR 9 0.11 16.16 9.17 -1.23 4.50 3.12 3.49 1.86 -2.56 
JPN 24 16017.38 25.41 18.28 -1.77 5.70 5.08 8.63 3.88 7.95 

KOR 23 640.22 22.03 16.52 -0.92 4.90 4.07 8.13 3.62 1.26 
LKA 4 0.25 16.48 13.16 0.00 4.00 3.00 5.36 2.95 -1.47 
MEX 13 45.31 20.58 17.61 0.24 3.70 2.86 5.46 2.00 4.13 
MYS 6 9.00 18.81 16.15 1.29 4.20 3.67 6.06 2.71 -0.26 
NLD 22 821.00 22.66 15.52 1.21 6.20 5.14 8.44 4.20 6.31 
NOR 17 107.12 21.22 14.75 5.66 5.40 4.62 9.14 3.31 4.20 
NZL 7 51.71 20.12 14.23 3.65 5.60 4.47 11.28 3.48 2.85 
PER 16 2.25 16.84 14.06 0.22 3.60 2.81 5.98 1.57 1.33 
PHL 10 5.00 18.50 15.09 -0.02 4.00 3.00 6.35 2.67 1.67 
POL 5 13.60 20.74 13.51 -0.15 4.50 3.13 9.82 2.90 3.01 
PRT 10 3.90 19.85 13.62 -0.84 4.40 3.15 3.98 2.28 1.48 
SGP 13 51.23 20.32 16.31 -1.96 5.60 5.30 6.10 3.08 0.69 
SLV 9 0.33 17.95 13.42 -0.05 2.90 2.54 3.84 2.49 0.27 
SWE 12 824.33 22.50 15.38 0.29 6.00 5.37 9.71 3.62 6.49 
THA 14 3.21 19.03 15.17 0.04 4.20 3.52 4.77 1.91 -0.96 
TTO 2 0.50 15.84 13.94 3.13 3.90 3.40 7.40 3.35 0.57 
TUR 13 2.15 20.31 14.14 -0.14 3.50 3.11 4.01 1.80 0.65 
URY 10 1.80 17.49 12.22 0.27 3.90 3.30 6.88 2.43 0.43 
VEN 19 21.42 19.29 16.04 1.66 4.00 2.67 5.16 1.76 2.03 
ZAF 5 99.80 20.75 14.58 0.32 5.10 4.42 5.11 3.57 4.06 
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Figure 1: Patents vs. R&D Expenditures 

0
10

00
0

20
00

0
30

00
0

To
ta

l P
at

en
ts

10 15 20 25
Ln of Total R&D Expenditure

 



 36

 

 

 

 

 

 

Figure 2: Patents vs. R&D Expenditures 
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Figure 3: ln Patents vs NIS variables 

0
2

4
6

8
10

Ln
 T

ot
al

 P
at

en
ts

3 4 5 6 7
Quality of Research Institutions

0
2

4
6

8
10

Ln
 T

ot
al

 P
at

en
ts

2 3 4 5 6
Collaboration

0
2

4
6

8
10

Ln
 T

ot
al

 P
at

en
ts

2 4 6 8 10 12
Years of Education

0
2

4
6

8
10

Ln
 T

ot
al

 P
at

en
ts

0 1 2 3 4 5
Property Rights



 38

 




